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ABSTRACT

RNA sequencing (RNA-Seq) has become the ex-
perimental standard in transcriptome studies. While
most of the bioinformatic pipelines for the analysis
of RNA-Seq data and the identification of significant
changes in transcript abundance are based on the
comparison of two conditions, it is common prac-
tice to perform several experiments in parallel (e.g.
from different individuals, developmental stages, tis-
sues), for the identification of genes showing a sig-
nificant variation of expression across all the con-
ditions studied. In this work we present RNentropy,
a methodology based on information theory devised
for this task, which given expression estimates from
any number of RNA-Seq samples and conditions
identifies genes or transcripts with a significant vari-
ation of expression across all the conditions studied,
together with the samples in which they are over-
or under-expressed. To show the capabilities offered
by our methodology, we applied it to different RNA-
Seq datasets: 48 biological replicates of two different
yeast conditions; samples extracted from six human
tissues of three individuals; seven different mouse
brain cell types; human liver samples from six indi-
viduals. Results, and their comparison to different
state of the art bioinformatic methods, show that
RNentropy can provide a quick and in depth analysis
of significant changes in gene expression profiles
over any number of conditions.

INTRODUCTION

The orchestration of gene expression in appropriate spatio-
temporal coordination is the key biological mechanism for
development and life in multicellular organisms. Indeed, we
can observe a highly regulated specificity of the expression
profile of genes in different cell or tissue types, develop-
mental or cell-cycle stages, physiological conditions, in re-
sponse to external stimuli, normal and pathological condi-
tions, and so on.

In the last few years, RNA sequencing (RNA-Seq) has
become de facto the experimental standard for transcrip-
tome investigations (1), producing estimated expression lev-
els computed either by assembling transcripts from se-
quence reads (2) or by employing reference genome and/or
gene annotations (3,4). Given normalized expression esti-
mates in two or more conditions, the next step is to iden-
tify those genes or transcripts that change their expres-
sion in a significant way, that is, show changes not simply
due to experimental noise or normal biological variation.
This is currently a very open and thoroughly investigated
line of research, with several different methods and statis-
tical approaches introduced to tackle the problem (among
many others, see (4–10), and (11) for a more comprehen-
sive overview), that try to incorporate into a unique statis-
tical framework all the different sources of biological or ex-
perimental variability. The most widely used protocols and
pipelines for the identification of transcripts or genes with
significant changes of expression used today are focused on
pairwise comparisons (11), even in case studies where a si-
multaneous comparison of larger numbers of samples and
conditions would be more appropriate.

On the other hand, given a study on more than two con-
ditions, there is no general unique definition of ‘condition
specific’ (e.g. tissue-specific) genes. For example, one could
require a gene to be exclusively expressed in a single condi-
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tion, or the expression of a gene in a specific condition to
be greater than k times its average across all the conditions
studied (12,13). Indeed, different tissue specificity metrics
have been introduced for the identification of tissue-specific
genes (14), that can be adapted to other multi-condition
comparisons. However, these measures consider only rela-
tive variation of expression, and thus two genes with very
different expression levels will be considered to be ‘equally
significant’ if they present the same variation with respect to
the respective averages across the samples studied. Further-
more, the assessment of the variability of gene expression
should also consider the biological or technical replicates
available for each condition.

Indeed, recent multi-tissue, or in general, multi sample
studies are still mainly based on pairwise comparisons. For
example, a recently published large scale study on 1641 sam-
ples from 43 different tissues of 175 individuals (GTEx,
(15)) resorted to pairwise comparisons to assess tissue and
individual specificity (sample against sample, or one sample
against the pooling of the others), and provided only gen-
eral indices summarizing the variability across tissues or in-
dividuals of each gene.

Starting from these premises, we propose here a novel
methodology called RNentropy, designed to detect genes
with significant changes of expression across any number
of conditions. Given normalized expression levels of genes
and/or their isoforms, calculated through any of the differ-
ent tools available (see among many others (3,4,7)), RNen-
tropy is able to identify over- or under-expressed genes in
each of the conditions studied. The samples, corresponding
to different conditions sequenced in any number of repli-
cates, are compared by taking into account the global gene
expression level and at the same time the impact of bio-
logical variation across replicates. The result of the analy-
sis is a map that, for each gene, reports in which samples it
can be considered over- or under-expressed, as well as the
corresponding significance levels. Thus, RNentropy is suit-
able for any analysis performed on multiple samples, where
genes of interest should be retrieved by considering simul-
taneously all the conditions studied without explicitly de-
signing comparisons among pairs or groups of conditions.
We provide some examples of analyses of this kind, showing
how the method can be employed in the detection of genes
with cell-, tissue- or individual-specific expression patterns.

MATERIALS AND METHODS

Our method works on gene or transcript expression lev-
els derived from a series of RNA-Seq experiments, where
samples are sequenced with technical or biological repli-
cates. We underline that the method does not compute by
itself normalized measures to be used in the comparisons,
but rather works downstream of analysis pipelines that esti-
mate transcript levels from the initial raw sequences. It thus
can work on any measure considered suitable for the com-
parison of transcript levels of a gene across different sam-
ples and conditions. One example are normalized levels ex-
pressed with measures like ‘Fragments (or Reads) per kilo-
base of exon per million reads’ (FPKM, RPKM, (16)):

FPKMi = ci

Nei
109

where ci is the raw read count associated with gene i, N is the
overall number of reads (fragments) used for the quantifica-
tion, ei is the overall size in bp of the exons of gene i. A vari-
ation on this measure are ‘Transcripts per million’ (TPM,
(3)), where each gene read count is first divided by exon size,
and the results are used to normalize by overall counts. That
is, given c′

i = ci/ei for gene i and N′ = ∑
c′

i over all the genes
considered, TPM for each gene are then defined as:

TPMi = c′
i

N′ 106

While these measures are still widely used, and results
based on them still appear on a regular basis, recent liter-
ature has pointed out some shortcomings for FPKMs and
RPKMs (see (11) and references therein), especially in com-
parisons of two conditions for the identification of differen-
tially expressed genes. As a consequence, it is currently ad-
vised to employ techniques that do not normalize each sam-
ple separately, but rather perform the normalization across
the conditions and samples that have to be compared (5–
7,9). To assess the effect on the results of the measure em-
ployed (if any), in our tests we used both TPMs and the
counts per million (CPM) output by edgeR after trimmed
mean of M-values (TMM) normalization (7).

Finding differentially expressed genes

RNentropy performs statistical tests based on information
theory that assess if and how much the expression of a
gene across any number of different samples diverges from
a given background (e.g. uniform) distribution, computing
the probability of obtaining the same test value if the expres-
sion pattern observed was actually resulting from the back-
ground distribution. After a subset of genes or transcripts
has been singled out to have a distribution significantly dif-
ferent from the background, further processing can identify
in which of the samples or conditions lie the most signifi-
cant differences, and thus which are the actual conditions
in which each of the genes or transcripts is more ‘specific’,
or ‘over-expressed’, or vice versa ‘under-expressed’.

The problem of finding differentially expressed genes
across multiple samples has been widely studied since the
initial transcriptome studies based on technologies like mi-
croarrays. Among many others, an approach that was intro-
duced for the problem (17) comes from information theory
and is based on Shannon’s entropy (from now on referred to
simply as entropy). The idea of entropy is to measure the
uncertainty of a random variable according to a series of
observations. When a discrete random variable has m pos-
sible outcomes, entropy is defined from the frequency with
which each outcome is observed as:

H = −
m∑

k = 1

fklogb fk

where fk is the frequency with which the random variable
assumes the k-th value in the observations. If fk = 1 for a
single outcome k, then entropy will be zero, and the max-
imum will be obtained when the variable shows a uniform
distribution with fk = 1/m for every outcome. For b the most
commonly used values are 2 or e (natural logarithm).
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Let T be a gene, and t1. . . tm its normalized expression

levels in m different samples. Let t̄ =
m∑

i=1
ti be the cumulative

expression value of T, and fi = ti/t̄. If we apply the entropy
formula to the fi expression values, H(T) will represent the
probability with which a RNA assigned to gene T was se-
quenced in the ith sample studied. The H(T) value will thus
be minimum (zero) when all the RNAs assigned to the gene
come from a single sample, that is, the gene is expressed only
in a single sample. The more unbiased the expression is, the
more H(T) will grow, and will be maximum if T has identical
expression values across all the samples.

As it is, entropy considers only relative variation of ex-
pression and not absolute expression levels. Also, the distri-
bution of the fi values across m samples is implicitly com-
pared to background expected values of bi = 1/m. To con-
sider cases for which the distribution of the background
values is not uniform, relative entropy (or, the Kullback–
Leibler divergence between the empirical distribution of the

fi values and theoretical one of bi, such that
m∑

i = 1
bi = 1) can

be employed:

RE (T) =
m∑

i=1

fi logb
fi

bi

The difference is that relative entropy is zero when fi = bi
for every i, is higher as the more the observed distribution
diverges from the background one, and it is maximum where
fi = 1 for some i. To take expression levels into account, we
introduce a weighted version of the above formula, where
each term is multiplied, instead of for the frequency, for the
corresponding expression value ti:

WRE (T) =
m∑

i=1

ti logb
fi

bi

This value corresponds to one half of the value of a G-
test (goodness of fit test, or log-likelihood ratio test) (18,19),
where the null hypothesis is, given values ti and a random
distribution with expected frequencies bi, to obtain the fol-
lowing G(T) value by chance:

G (T) = 2
m∑

i = 1

ti logb
fi

bi
= 2 WRE (T)

The G(T) values are distributed with a chi-square distri-
bution with m – 1 degrees of freedom. This fact allows us to
associate a P-value with every WRE(T) value, by multiply-
ing it by two and using b = e as the base of the logarithm.
The resulting P-value will thus represent the probability of
obtaining the ti observed values by chance assuming a ran-
dom background distribution with frequencies bi. We call
this test the global sample specificity test.

To assess the global sample specificity of a single gene
we can assume a uniform background distribution with bi
= 1/m, but the same framework can be used with any other
assumption on the theoretical distribution of the expression
values. Resulting P-values have to be corrected for multiple
testing, for which we employed the Benjamini–Hochberg

procedure, ranking the genes according to increasing P-
values, and given a significance P-value threshold � RNen-
tropy considers as significant all genes for which G(T) ≤
k
N α, where N is the overall number of genes and k is the
rank position of the gene.

Once a gene T has been singled out to be significant, an-
other test can be performed for each sample, comparing the
expression of T in the sample with its expression in the other
m – 1. Hence, the sum will consist of two terms, with ex-
pected values t̄

m for the sample considered and (m − 1)t̄/m
for the others, where t̄ = ∑

i
ti is the cumulative expression

of T in all the samples considered. We call this computation
the local sample specificity test.

All in all, all genes that passed the global sample speci-
ficity test can be reported to be over-expressed in the con-
ditions with expression value higher than the average and
that in the local specificity test yield a P-value lower than a
threshold α. This test will also consider as significant those
genes with expression values significantly lower than the av-
erage in some samples, in which they can be then considered
to be ‘under-expressed’ or ‘repressed’. The output, thus,
summarizes for each gene if it passed the global specificity
test, and, if so, if the gene is significantly over- or under-
expressed in each of the samples compared.

Another interesting feature of the tests we just introduced
is that they do not necessarily have to be applied to a sin-
gle gene. So, given any subset of genes belonging to a given
pathway or selected according to some criterion, they can be
applied to the average expression values of the genes across
the samples, in order to assess whether, as a whole, they
present a significant variation of expression. Also, it can be
applied in a straightforward way to cases where the expres-
sion of a gene is split into single transcript or splicing iso-
form contributions: the result will be that RNentropy will
return transcripts and isoforms with a significant variation
of expression.

Using replicate experiments

In RNA-Seq analyses, it is essential to work with biolog-
ical replicates, that is, sequence more than one sample for
each of the conditions studied, in order to estimate the
amount of experimental or biological variability obtained
in the measurements. Hence, methods for the detection of
differentially expressed genes assess whether the difference
between the mean expression values in two conditions is
significant, by comparing it to the variability of the expres-
sion estimated from the replicates themselves. The latter is
due to two main factors: on one hand experimental noise,
derived from all the experimental and computational steps
that lead to the final expression values, and on the other the
actual biological variation across the samples studied. In-
deed, the usage of the term ‘replicates’ in literature is usually
employed quite liberally, from the resequencing of the same
RNA sample (also referred to as ‘technical’ replicates since
all the variation is due to technical reasons), to sequenc-
ing of different RNA samples extracted from the same cell
line, to sequencing of RNA samples of the same condition
(tissue, tumor, etc.) from different individuals. In this lat-
ter case, biological variation becomes dominant. As a con-
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sequence, raw gene read counts across multiple replicates
follow a Poisson distribution in technical replicates (20,21),
while they have been shown to be ‘over-dispersed’ in case of
biological variation, and best approximated by a negative
binomial distribution whose variance depends on a disper-
sion parameter that can be estimated from the data them-
selves (6,7,21,22).

Our method does not take explicitly into account the vari-
ance of the expression values, but performs a separate test
on each replicate by itself. If some samples are defined as
replicates of the same condition, a gene will be over- (or
under-) expressed in the condition if the local sample speci-
ficity test considers it to be significantly over- (under-) ex-
pressed in all the replicates. The only difference is that in
the local test the expected value against which each repli-
cate of a condition is compared is computed without taking
into account the expression values of the other replicates of
the same condition. Requiring each single replicate to pass
the test is a very stringent criterion, since all replicates have
to be significantly above the average expression – while the
most widely used methods and tissue-specificity indices sim-
ply consider only the mean expression and/or its variance
across the replicates. For this reason, in case samples that
could be considered ‘replicates’ show high variability of ex-
pression (e.g. they come from different individuals), our ad-
vice is to process them separately instead of grouping them
into replicates, and highlight over-expressed genes shared
by more than one sample by post-processing the results.

Assessing similarities among conditions

After differentially expressed genes have been identified in
each of the conditions studied, they can be grouped or clus-
tered according to their over- and/or under-expression sig-
nature. Also, useful information can be extracted by defin-
ing correlations and similarities among the conditions, on
the basis of which genes were found to be over-expressed
in each, and their overlap. For this task, we included in
RNentropy a module to compute point-wise mutual infor-
mation (PMI, (23)) between every pair of conditions. First,
a matrix with one row per gene and one column per sam-
ple is built from the output of RNentropy according to the
chosen thresholds of global and local P-values. Cell (x, y)
of the matrix has value 1 if gene x is found to be over-
expressed in condition y, –1 if under-expressed, and zero
otherwise. Then, the PMI on over-expressed genes between
two columns (conditions) i and j is computed, defined as

PMI (i, j ) = log2
f (i, j )

f (i ) f ( j )

where f(i,j) is the fraction of genes passing the global test
with 1 in both columns, divided by the product of the frac-
tion of genes passing the global test with 1 in column i by
the fraction of genes with 1 in column j. Positive PMI val-
ues thus indicate that the number of over-expressed genes
shared by the two conditions compared is higher than ex-
pected, showing co-association between the two and point-
ing to relevant correlations between the respective tran-
scriptomes. On the other hand, negative PMI values vice
versa point to anti-correlation between the two conditions.

Comparison with other methods

DESeq2 (6) and edgeR (7) are two of the most widely used
and best performing tools (26) for the identification of dif-
ferentially expressed genes between two conditions. Both
tools can anyway process any number of conditions split
in any number of replicates, and the normalization of read
counts and computation of dispersion parameters is per-
formed across all samples. Both methods assess differential
expression by selecting two subsets of samples to be com-
pared, each one defining a condition whose samples are
considered replicates. They also include the possibility of
evaluating the significance of the variation of the expression
across all samples considered with ANOVA-like tests. Thus,
a framework similar to our method can be designed with
both, by comparing the results of the ANOVA-like tests to
those of our global significance test. A series of contrasts
in which each condition or sample is compared with all the
others will be the equivalent of our local significance test.

For edgeR a matrix of contrasts can be created, where
each contrast consists of one condition against all the oth-
ers. A one-way analysis of variance (ANOVA) is then per-
formed on each gene, combining the results of the sin-
gle contrasts and the respective statistics into a single F-
statistic, with the corresponding P-value and FDR.

For DESeq2, the likelihood-ratio test (LRT) can be em-
ployed. The LRT examines two models for the counts, a full
model with a certain number of terms and a reduced model,
in which each of the single conditions is removed. The test
determines if the increased likelihood of the data using the
extra terms in the full model is more than expected if those
extra terms are truly zero. This is conceptually similar to an
analysis of variance (ANOVA), except that in the case of the
Negative Binomial general linear model (GLM) employed
by DESeq2 it is an analysis of deviance (ANODEV), where
the deviance captures the difference in likelihood between
a full and a reduced model. Once again, a P-value and the
corresponding FDR are associated with each gene. Over-
expression in each condition can be then evaluated by per-
forming a separate LRT for the condition against the oth-
ers. Further details on the parameters and commands we
employed for both tools in the tests we present are provided
as Supplementary Material.

RESULTS

We benchmarked our methodology on different datasets.
The first one consisted of yeast gene expression measured
on two different conditions, each with 48 biological repli-
cates, taken from (26,27). The second is a study performed
on 18 human RNA-Seq samples derived from six tissues
(liver, kidney, brain, lung, muscle, heart) in three age- and
sex-matched individuals. Each sample was sequenced in
three technical replicates, thus yielding in all 54 samples
to be compared. Then, we applied RNentropy to a dataset
consisting of seven mouse brain cell types taken from (13).
Finally, we show the result of the analysis of liver samples
from three male and three female individuals, taken from
a study that investigated sex-specific expression in human
and primates (28). The first dataset was chosen in order to
evaluate the correspondence between experimental and esti-
mated false positive rates. The others show how the features
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of our methodology are suitable in detecting simultaneous
tissue- and/or individual-specific expression in a complex
experimental setting, with multiple samples from different
individuals or different cell types and subtypes.

In all the following examples, we employed RNentropy
with the default threshold of 0.01 for both the corrected
global P-value and the local P-value. Each of the tests was
run on standard personal or laptop computers, requiring a
computation time of at most a few minutes with negligible
requirements for memory.

Assessing false positive rates on yeast replicate experiments

Several benchmark studies are available, comparing sensi-
tivity and specificity of tools for the identification of dif-
ferentially expressed genes. Some encompass the impact of
sequencing depth and an evaluation of the reliability of the
estimation of transcript levels from read counts, as in (21).
In others, benchmark data come from different individuals,
as for example in (29,30): in this case, the variability of the
data is not due only to the experimental protocol in the pro-
duction and analysis of the sequences, but also to individual
variation, which as we show in the following is a key fac-
tor in studies of this kind. Synthetic datasets that produce
read counts according to a given random distribution (usu-
ally Poisson or negative binomial) have also been employed
(22), which in turn are often the same background distribu-
tions assumed by most of the methods. Thus, for a first as-
sessment of the capabilities of our method, we chose to em-
ploy the data presented in (26,27). It is an experiment per-
formed on Saccharomyces cerevisiae where two conditions
(wild-type and a Δsnf2 mutant) were each sequenced in 48
replicate samples. Each replicate corresponds to a different
wild-type (WT) or Δsnf2 yeast strain. Since these samples
have little biological variation across replicates (estimated
negative binomial dispersion of read counts was 0.01 (27),
very close to the Poisson distribution), and present little
or no problems in data processing (e.g. assigning reads to
the correct gene or splicing isoform), they were used to de-
sign datasets also for assessing false positive rates of tools
for the identification of differentially expressed genes across
two conditions. Authors highlighted technical problems in
five of the WT and four of the Δsnf2 samples, probably due
to uneven priming during the PCR amplification step of li-
brary preparation, considering the resulting expression val-
ues unreliable and excluding them from downstream analy-
ses. As in the original work (26), we excluded these samples
from downstream analyses.

We transformed the original read counts (retrieved from
ENA archive project PRJEB5348 https://www.ebi.ac.uk/
ena/data/view/PRJEB5348) to TPMs following the formula
shown in the previous section, employing for gene exon sizes
the yeast gene annotation sacCer3 (31). We then generated
different datasets, consisting of two or more groups, each
composed of two or more replicates sampled at random
from the WT samples. The number of conditions we sim-
ulated ranged from 2 to 6, each with a number of replicates
ranging from 2 to 5. For each condition/replicate number
combination we built 1000 different datasets, each one with
a different combination of samples selected at random. We
ran RNentropy on each dataset, considering a gene to be

significantly over-expressed if it passed the global test with
a corrected P-value threshold of 0.01, and all the replicates
of at least one condition passed the local test with P-value
<0.01 with all the expression values greater than the average
(over-expressed) or lower (under-expressed).

The results are summarized in Table 1. Since all genes
found to be over- or under-expressed are to be considered
false positives, the table shows the false positive rate, com-
puted as the number of genes found to be either over- or
under-expressed divided by the overall number of local tests
performed on genes. The theoretical false positive rate of
our method (0.01) is very close to the empirical one for two
replicates, and the latter is <0.01 for three or more repli-
cates in any number of conditions. That is, the more repli-
cates are available the more conservative the method is: this
is a feature to be expected given the way the replicates are
processed.

We ran edgeR and DESeq2 on the same datasets, start-
ing from the original read counts, both with a corrected
P-value (FDR) threshold of 0.01 (see Supplementary Ma-
terial). The two-condition comparisons with two replicates
confirmed the good performance previously reported (26),
with an observed false positive rate around 0.008 for edgeR
and 0.01 for DESeq2, very close to the ones of RNentropy.
On three or more conditions compared once again the re-
spective FPRs were lower than theoretical estimate of 0.01
either by employing the ANOVA-like tests, the ‘local’ com-
parisons of one condition against the others, or a combina-
tion of both. Increasing the number of replicates had the
effect of a significant drop of in false positives for both
(more visibly so for edgeR), similar to the one observed with
RNentropy, for any number of simulated conditions. All in
all, thus, the performance of RNentropy is in line with two
of the best performing methods on the same benchmark
dataset (26), with an empirical false positive rate well be-
low the threshold of 0.01 with three or more replicates. We
then repeated the test with RNentropy by replacing TPM
expression values with TMM-normalized counts, with no
relevant difference in the false positive rates detected (data
not shown).

In order to have a more complete picture of the over-
all variability of this dataset, we also ran RNentropy with
the same parameters used before on all the 48 WT samples,
and then on the Δsnf2 dataset (thus including in both also
the ‘bad’ samples excluded before). Each sample was pro-
cessed as a separate condition (hence, 48 conditions in both
datasets, with no replicates). The number of genes passing
the global test and local test was quite high, more of the 5%
of the total. However, we observed that the distribution of
the number of over-expressed genes across all the samples
was not uniform (which would be an indicator of a problem
in the statistical testing) but rather, as shown in Figure 1
for TPM normalized values, skewed towards a few samples
with a very high number of genes significantly differing from
the others (see some examples in Supplementary Figure S1):
these samples correspond to those originally identified as
unreliable replicates (in red in the histograms). Notice also
how the variability seems to be higher in WT samples, with
also replicates not previously considered ‘bad’ (like number
17) with a higher fraction of over-expressed genes. This re-
sult points to a further application of our method, that is,

https://www.ebi.ac.uk/ena/data/view/PRJEB5348
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Table 1. Results on the yeast 48 WT sample dataset

Number of conditions

2 3 4 5 6

RNentropy 2 Reps 0.0104 0.0110 0.0103 0.0106 0.0104
3 Reps 0.0055 0.0041 0.0035 0.0033 0.0032
>3 Reps <0.001 <0.001 <0.001 <0.001 <0.001

edgeR
2 Reps 0.0083 0.0099 0.0074 0.0078 0.0077
3 Reps <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
>3 Reps <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

DESeq2
2 Reps 0.0120 0.0099 0.0092 0.0090 0.0089
3 Reps 0.0085 0.0074 0.0035 0.0057 0.0035
>3 Reps <0.001 <0.001 <0.001 <0.001 <0.001

False positive rates (number of over- and under-expressed genes passing both the global and the local test of RNentropy, divided by the number of
tests performed) for each combination of number of conditions (columns) and replicates (rows). False positive rates for each combination of number of
conditions (columns) and replicates (rows) derived from edgeR and DESeq2. FDR threshold for all methods was set to 0.01.

Figure 1. False positive rates (fraction of over-expressed genes passing the
global and local test of RNentropy in each of the samples) split into the
different samples in the comparison of (A) the 48 wild-type yeast replicates
and (B) the 48 mutant yeast replicates. Theoretical false positive rate was
0.01.

the identification of one or more samples with a significant
deviation from the others in cases where little or no differ-
ence should be expected. Point-wise mutual information is
also able to highlight problematic samples, since those yield-
ing the highest numbers of over-expressed genes at the same
time show to be anti-correlated with respect to all the other
samples, as shown in Supplementary Figure S2.

Human individual samples from six tissues

RNA samples were taken from six different tissues (brain,
liver, lung, striated muscle, kidney, heart) from three male
individuals. They have already been employed to study
RNA editing (24) and the correlation of the expression of
mitochondrial genes with mitochondrial DNA abundance
(25). The three sample IDs are S7, S12 and S13, and all
sample and sequencing details are reported in Supplemen-
tary Materials. Each sample was sequenced in three tech-
nical replicates, for an overall number of 54 expression pro-
files. For the quantification of expression levels, each sample
was processed using the Rsem software package (3) with de-
fault parameters. As reference transcriptome, we employed
the UCSC human gene annotation (version 2013–06-14,
genome assembly hg19). The annotation comprises 78 829
transcripts assigned to 28 452 different genes. Genes an-
notated on the mitochondrion or on ‘hap’ chromosomes
were not considered, and the respective read counts ex-
cluded from downstream normalizations and analyses. We
employed both the transcripts per million (TPM) expres-
sion values output by Rsem, or the read per million counts
(CPM), as output by edgeR after TMM normalization of
the original raw counts returned by Rsem. In both cases,
we processed the resulting expression values by computing
the global and local sample specificity tests on each gene
with global (adjusted) and local P-value thresholds of 0.01.
The complete results are available as Supplementary Tables
S1-S3.

Using TPM values

With TPM values the global sample specificity test returned
14 624 genes of the 28 434 considered as showing an expres-
sion pattern with a significant deviation from the uniform
distribution, a fraction greater than half of the genes if re-
stricted to the genes showing evidence of transcription in
at least one sample. We then deemed a gene that passed
this initial test to be over- (under-) expressed in a given
individual-specific tissue sample if it passed the local sample
specificity test in all the three replicates for the sample, with
expression values higher than (or lower than, respectively)
the average across all the samples.
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Figure 2. (A) Number of genes reported as over-expressed by RNentropy
in each of the 18 human tissue samples. (B) Number of genes found to
be simultaneously over-expressed in a number of samples from 1 to 9. (C)
Number of genes over-expressed in each of the six tissues by considering
all individual samples from each tissue as replicates.

The tissue with the highest number genes over-expressed
in at least one individual was brain, with more than 6000
genes, followed by heart (∼4000). However, we had only
4578 cases of genes resulting over-expressed in a tissue in
all the three individuals, as shown in Table 2a and Figure
2. The trend towards individual specificity changes accord-
ing to the tissue, with muscle having 40% of the genes over-
expressed in all the three individuals, while vice versa heart,
kidney and liver have the large majority of genes (∼50%)
with expression biased in only one individual. Supplemen-
tary Figure S3 confirms this fact, showing how the distribu-
tion of gene expression across the three individuals in each
of the tissues studied is highly polarized towards one or two
of the individuals, with visible differences for each tissue.

The different degrees of correlation among the individual
transcriptomes are also nicely summarized by the respective
point-wise mutual information values, as shown in Supple-
mentary Figure S4.

We confirmed tissue specificity of over-expressed genes,
regardless of the number of individuals they were found in,
by comparing our results with other resources for the iden-
tification or retrieval of tissue-specific genes.

The UP TISSUE enrichment analysis available at
DAVID (32) defines over-expressed genes for more than
100 different human tissues, and permits to analyze sets
of genes for enrichment in over-expression for a tissue.
Submitting genes reported by RNentropy as over-expressed
in each tissue to this analysis returned the corresponding
tissue as the most enriched one with very low P-values
(Table 2a, bottom).

We then compared our over-expressed genes in each
tissue with those defined as having expression ‘tissue-
enriched’, ‘tissue-elevated’, or ‘group-enriched’ in the Hu-
man Protein Atlas (33), thus selecting genes considered ei-
ther to be specific for the tissue or for a group of tissues
comprising the one studied. As shown in Table 2b, the re-
sults of RNentropy are consistent with these definitions of
tissue specificity, despite the fact that, also in this case, tissue
specificity was defined on the basis of relative enrichment
against a much larger sampling of 34 tissues. About 85–95%
of the genes defined as tissue-specific in the Human Protein
Atlas are also reported by RNentropy, with the sole excep-
tion of 75% for lung. Remarkably, as shown in the table, a
non negligible fraction of these genes was found to be over-
expressed by RNentropy not in every individual. Indeed,
it appears that genes are usually considered to be ‘tissue-
specific’ show significant changes of expression across dif-
ferent individuals.

Finally, GSEA analysis (34) on genes found over-
expressed in each tissue by RNentropy reported enrichment
in functional annotations consistent with the respective tis-
sues, as also shown by their overlap with the GSEA results
we obtained on tissue-specific genes for the Human Protein
Atlas (summarized in Supplementary Table S2). In some tis-
sues the most relevant functional categories remained un-
changed if we included in the analysis genes over-expressed
in one or two individuals out of three. For example, in brain,
that showed the highest degree of individual-specific expres-
sion, virtually the same categories, all related to neurons
(synapse, axon, etc.), were found to be enriched regardless
of the number of individuals genes were over-expressed in.
This is the effect of having genes belonging to the same fam-
ily differentially expressed across the individuals. An exam-
ple is the expression of genes of the synaptotagmin family,
shown in Figure 3A. While the cumulative expression of the
members of the family is quite balanced among the three
individuals (rightmost column), there are significant biases
for most of the genes, that tend to be split between those
over-expressed in S13 against those in S7 and S12.

In other tissues, however, enriched tissue-specific func-
tional annotations could be clearly retrieved only for genes
over-expressed in all individuals, as for example in muscle
or heart. In the latter, the largest number of over-expressed
genes was found in individual S7. Functional enrichment
analysis on only these genes reported categories like riboso-
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Table 2. (a) Number of genes in each of the six tissues of the 18 human tissue sample dataset passing the global and local specificity tests, and considered
to be over-expressed in one, two and three individuals. Expression values were defined as transcripts per million (TPM). On each tissue, enrichment for
over-expressed genes in the UP TISSUE DAVID analysis (32) is reported on the bottom row, with the tissue yielding the lowest P-value. (b) Percentage of
tissue-specific genes, according to the Human Protein Atlas (33), found to be over-expressed by RNentropy, according to the number of individuals. (c)
Number of genes over-expressed in each of the six tissues when the nine samples from the different individuals were processed as replicates of the same
condition

(a)

IND/Tissue Brain Heart Kidney Liver Lung Muscle

In 1 2487 (41%) 1921 (48%) 1358 (51%) 924 (48%) 1453 (57%) 731 (35%)
In 2 2143 (35%) 1406 (35%) 828 (31%) 332 (17%) 578 (23%) 521 (25%)
In 3 1487 (24%) 643 (16%) 460 (17%) 653 (34%) 527 (20%) 808 (39%)
Total 6117 3970 2646 1909 2558 2060
UP TISSUE (P-value) Brain (<10−178) Heart (<10−73) Kidney (<10−72) Liver (<10−225) Lung (<10−23) Sk. muscle (<10−131)

(b)

Brain Heart Kidney Liver Lung Muscle

Genes over-expressed for HPA 1375 195 306 409 174 307
Over-expressed for
RNentropy:
in any # of individuals (%) 1256 (91%) 168 (86%) 267 (87%) 392 (96%) 131 (75%) 280 (91%)
in 1 individual (%) 141 (10%) 20 (10%) 28 (9%) 22 (5%) 27 (16%) 22 (7%)
in 2 individuals (%) 509 (37%) 54 (28%) 177 (58%) 49 (12%) 40 (23%) 26 (8%)
in 3 individuals (%) 606 (44%) 94 (48%) 62 (20%) 321 (78%) 64 (37%) 232 (76%)
Not DE in tissue (%) 38 (3%) 17 (9%) 23 (8%) 9 (2%) 21 (12%) 14 (5%)
Not DE in any tissue (%) 81 (6%) 10 (5%) 16 (5%) 8 (2%) 22 (13%) 13 (4%)

(c)

Brain Heart Kidney Liver Lung Muscle

2470 1050 774 833 896 1031

Figure 3. (A) Expression in brain of genes of the synaptotagmin family, split into the contributions of the three individuals. While most of the genes show
remarkable bias for the different individuals, the overall expression of the family is more balanced (rightmost column). (B) Average expression across the
samples of genes belonging to the KEGG pathway ‘Cardiac Contraction’. (C) Distribution across the 18 human tissue samples of the expression of genes
RPS4Y and FOSL2 (TPM, mean values over the three individual replicates of each sample).
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mal proteins, mitochondrion, and respiratory chain (Bon-
ferroni corrected P-value < 10−10), but also cardiac muscle
contraction (KEGG pathway enrichment P-value <10−15),
heart contraction (<10−7), cardiomyophathy (<10−20), a
functional annotation remarkably consistent, like the oth-
ers, with the cause of death of individual S7, which was
acute coronary syndrome (35,36). We then retrieved from
the KEGG pathway database (37) the list of genes be-
longing to the pathway ‘cardiac contraction’, and applied
RNentropy to their average expression values across the
samples investigated (see Figure 3B). That is, we performed
a sample specificity test not on single genes, but on the av-
erage expression of all the genes in the pathway, in order to
determine whether it changed significantly across the tissues
or the individuals. Genes belonging to the pathway resulted
to be over-expressed in muscle samples of all the individu-
als, with similar expression average, but more interestingly
over-expressed in heart only for S7.

We also obtained 3884 genes to be considered mainly ‘in-
dividual specific’, that is, with expression significantly in-
creased in one or more tissues but always in the same in-
dividual. Remarkably, 582 of those genes had individual
specificity as a key feature stronger than tissue specificity,
that is, resulted to be over-expressed in more than one tis-
sue but always in only one individual. Two examples are
shown in Figure 3C. Gene RPS4Y is over-expressed by indi-
vidual S13, while FOSL2 is over-expressed, in every tissue,
in individual S12. As previously discussed this could be due
to normal biological variation, but also to specific individ-
ual response to the conditions leading to the post-mortem
sampling. Other large-scale studies on human gene expres-
sion highlighted individual variability (15), also correlating
it with eQTLs: RNentropy however permits to study this
phenomenon more in depth, with a detailed and simulta-
neous individual- or tissue-based assessment and classifica-
tion of the specificity of the expression of each single gene.

Finally, a non negligible total of 1335 genes passing the
global test could not be considered to be significantly over-
expressed in any sample after the local test. Of these, 529
genes were reported to be under-expressed in at least one
sample. Thus, RNentropy identified a small but relevant
subset of genes characterized by the fact of being ‘repressed’
in one or more of the samples but not over-expressed in
any. Interestingly, about 75% of these genes were found
to be under-expressed in liver samples. The most relevant
functional annotation for them was ‘cell cycle’ (P-value <
10−6), an observation consistent with the specific expres-
sion and/or activation patterns of cell cycle genes in liver
cells compared to other cell types (38). Finally, we found
most of the remaining genes, passing the global test but
not the local, and thus neither over- or under-expressed
in any sample, to have variable transcript levels across the
replicates, hence not passing the test in all of them as re-
quired. Unsurprisingly, this latter group was formed mostly
of small/micro/tRNA genes, included in the UCSC anno-
tation we employed, but for which the measures obtained
from a total RNA-Seq experiment like the one we per-
formed cannot be considered reliable, with a high variability
of the estimated levels across the replicates.

As a further test, we grouped samples by tissue, by consid-
ering all the samples of different individuals for the same tis-

sue as biological replicates for the local test (Table 2c). The
result of the global test was obviously the same, but since we
required all individual samples for a tissue to pass the local
test, the number of genes resulting to be over-expressed in at
least one tissue was lower, and a larger number of genes was
discarded because not passing the test in all the replicates.
Overall, we obtained 6603 genes passing the global test and
over-expressed in a tissue in all the individual samples. This
number is, on the other hand, higher than the number of
genes found to be over-expressed in the same tissue in all the
three individuals processed separately. This is due to how
our method performs the local test on replicates: by pro-
cessing the individual samples of each tissue separately, a
sample has to be over-expressed also considering samples of
the same tissue from other individuals; while when samples
are grouped by tissue, each sample has to be over-expressed
only with respect to other samples from different tissues.

Using TMM normalized counts per million

The same analysis starting from counts per million after
TMM normalization yielded very similar results. With re-
spect to the results obtained with TPMs, the number of
significant genes passing the global test is slightly lower
(14 399), with 13 479 genes passing the local test and over-
expressed in at least one sample (Table 3, Supplementary
Table S3).

While in TPM values the original counts are normalized
both by gene length and library size, the count per million
values are normalized by TMM only with respect to the
latter. Indeed, we can observe that genes resulting signifi-
cant by using TPM are much shorter than those reported by
TMM only, with a difference in median length greater than
2000 bp (Supplementary Figure S5). Concerning the spe-
cific conditions, the fraction of genes over-expressed in one,
two or three individuals in each of the tissues remains re-
markably similar for the two measures. That is, the high in-
dividual variability of expression can be captured by RNen-
tropy in very similar proportions with both measures (com-
pare percentages of Tables 2 and 3). Moreover, the 12 012
genes passing the global test with both, 35% are consid-
ered over-expressed in exactly the same conditions, and for
a further 46% there are only one or two samples in which
the genes are found over-expressed only with one measure
(Supplementary Figures S6 and S7). Here we can observe
that, in general, TMM-normalized values tend to yield less
genes specific for brain and heart samples, and more for
muscle and liver. In other words, the number of genes over-
expressed in each of the different tissues tends to be more
balanced after TMM normalization than with TPMs, an-
other clear consequence of the normalization technique
used to produce the values on which the test is applied.
All in all, RNentropy seems to work with consistent results
on both measures, and all relevant differences lie solely in
the normalization technique employed. We consider further
considerations on this aspect outside the scope of this work,
referring the reader to specialized literature for comparisons
and assessments of different approaches to the normaliza-
tion of RNA-Seq data, in order to find the one most suitable
for analyses aimed at finding differentially expressed genes.
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Table 3. Number of genes in each of the six tissues of the 18 human tissue sample dataset passing the global and local specificity tests, and considered to
be over-expressed in one, two and three individuals

IND/Tissue Brain Heart Kidney Liver Lung Muscle

In 1 1428 (33%) 1495 (58%) 972 (42%) 1455 (41%) 1148 (41%) 806 (22%)
In 2 1428 (33%) 635 (25%) 836 (36%) 813 (23%) 876 (31%) 916 (26%)
In 3 1504 (34%) 419 (16%) 515 (22%) 1310 (37%) 766 (27%) 1840 (51%)
Total 4360 2549 2323 3578 2790 3562

Expression values analyzed were defined as counts per million, as output by edgeR after TMM normalization.

Comparison with other methods

We applied to the original read counts output by Rsem both
edgeR and DESeq2. By using the same FDR threshold of
0.01 in the respective ANOVA-like tests, both methods re-
turned as ‘significant’ a much larger number of genes than
our method, as shown in Figure 4. Of the 20 094 genes
with at least one read mapped in at least one sample given
as input to both, 19 632 and 19 391 genes had an associ-
ated FDR lower than 0.01 for edgeR and DESeq2, respec-
tively. Thus, these ‘global’ indicators, which are equivalent
to the initial selection provided by the global specificity test
of RNentropy, provide little or no filtering of the data, since
in both cases >96% of the genes showing evidence of tran-
scription are reported as having significant changes of ex-
pression across the conditions studied. The results of the
two methods after this step are consistent, with a negligible
fraction of genes passing the test only for either, and in turn
only a small subset of genes resulting to be variable only for
RNentropy.

In single comparisons between one individual tissue sam-
ple to the others, reproducing our local test, the two meth-
ods had strikingly different behavior (see Figure 4). We
again employed for both methods the corrected p-value
(FDR) threshold of 0.01, and, as with RNentropy, no ex-
plicit expression fold-ratio threshold. Compared to RNen-
tropy, edgeR reported a much higher number of genes as
over-expressed in at least one individual-specific tissue sam-
ple. We had more than 10 000 genes (half of those con-
sidered) over-expressed in at least one individual for brain,
liver, lung and kidney, and more than 8000 for heart and
muscle.

On the other hand, DESeq2 was much more conserva-
tive, with only 10 236 genes found to be over-expressed in
at least one condition. We noticed however a sizable num-
ber of ‘outliers’ in several of the tests performed, that is,
genes whose expression profile could not fit the general lin-
ear model and for which the statistical test could not be
performed. The more the outliers, the lower the number of
over-expressed genes found in a condition, with <200 genes
found to be over-expressed in heart and kidney samples.

In general, nearly all genes reported by RNentropy to be
over-expressed in at least one condition (using either TPM
or TMM normalized CPM) are found to be over-expressed
in the same condition(s) also by edgeR. Instead, while for
DESeq2 virtually all the over-expressed genes in each con-
dition were found also by edgeR, in some tissues and/or
individuals there is a non negligible fraction of genes de-
tected as over-expressed by either DESeq2 or RNentropy,
but not by both. The most remarkable difference between
the two sets of genes lies in the variance of the expression

of the genes. As shown in Figure 4, genes found to be over-
expressed only by DESeq2 in at least one condition have an
expression variance (measured as TPMs) significantly lower
than those found by RNentropy alone. We thus conjecture
that when one condition with very little variability (three
individual technical replicates of the same tissue sample) is
compared to a highly variable set, DESeq2 claims the gene
either to be an outlier, or to have a change of expression not
significant because its high expression variance leads to an
over-estimation of the FDR. Vice versa, where the overall
variance is lower, DESeq2 picks as significant genes with lit-
tle variation in expression (as log-fold ratio of the mean ex-
pression values)––not detected as significant by RNentropy.

We then ran both methods on the samples grouped by
tissue. Also in this case, more than 19 000 genes passed the
global tests for both, in other words, could be considered
to be variable enough to be ‘tissue specific’ for some tissue.
edgeR reported as over-expressed in a whole tissue about
half of the genes that were so in at least one individual,
with ∼5000 genes over-expressed in each tissue. Interest-
ingly, DESeq2 in this case returned a much larger number of
tissue over-expressed genes than those found by keeping the
individual samples separate, also because the testing found
just a very few outliers. That is, hundreds of genes that were
not considered to be over-expressed in a tissue in any indi-
vidual were reported to be over-expressed for the same tis-
sue if all the individual samples were merged and considered
replicates of the same condition. We conjecture again that in
the latter case the method could obtain better and more bal-
anced variance estimates for the statistical tests performed.

Deciding on the basis of comparisons of this kind which
method can be considered more reliable clearly depends on
what kind of result one expects. Some typical cases of the
discrepancy in the results at the individual and tissue level
we obtained are shown in Figure 5. Gene ABCC2 is re-
ported to be over-expressed in all three individuals in liver,
and in two individuals out of three in kidney by RNentropy,
that at the tissue level considers it over-expressed only in
liver, since in kidney it does not pass the local test in in-
dividual S12. For edgeR at the individual level it is over-
expressed in the same five conditions as RNentropy, but
at the tissue level edgeR considers it over-expressed also in
kidney. Finally, at the individual level DESeq2 quite strik-
ingly does not find it over-expressed in any sample, always
reporting corrected P-values greater than 0.01, but consid-
ers it over-expressed in liver at the tissue level, that is, on the
test performed by comparing the nine liver samples grouped
together to the others. Gene AKAP5 is considered to be
over-expressed in brain (by combining all nine samples in
one condition) by both edgeR and DESeq2, despite the fact
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Figure 4. Performance comparison of RNentropy, DESeq2, and edgeR on the 18 human tissue dataset. Clockwise from top left: (A) Overlap among genes
passing the global tests of the three methods. (B) Number of genes found to be over-expressed in each sample by either RNentropy, edgeR, or both. (C)
Number of genes found to be over-expressed in each sample by either RNentropy, DESeq2, or both. (D) Distribution of the standard deviation of TPM
expression values of all genes found to be over-expressed in at least one tissue by DESeq2 and RNentropy (either or both), by DESeq2 only, by RNentropy
only. Wilcoxon rank-sum test on ‘DESeq2 only’ and ‘RNentropy only’ distributions P-value < 2.2e–16.

that in one individual it has an expression value much lower
than other tissues (compare brain S13 with lung S13 and
kidney S12), but not by RNentropy for which it passes the
test only for individuals S7 and S12.

Finally, we applied to this dataset two of the most widely
used measures introduced for the identification of tissue-
specific genes (14), namely the tissue-specificity index (TSI,
(39)) and the tau index (40). Given xi , 1 ≤ i ≤ n, the ex-
pression values of a gene over n samples, they are defined as
follows:

TSI =
max

1≤x≤n
xi

∑n
i = 1 xi

tau =
∑n

i = 1 (1 − τi )
n − 1

where τi = xi

max
1≤x≤n

xi

As in (14) we considered only genes with TPM > 1 in at
least one sample, computed both indices using the average
expression value of the three replicates of each sample, and
defined a gene to be specific for (over-expressed in) at least
one sample if the corresponding index value was greater

than 0.85. For both indices, the number of genes found to be
over-expressed in at least one sample was significantly lower
than RNentropy, with 5627 genes returned by the tau index
and, remarkably, only 168 for the TSI.

Indeed, being relative, these two measures were able to
capture only those genes with the highest variation in one
sample relative to the average, regardless of the estimated
transcript levels. That is, the average TPM expression of
the 5627 genes relevant for the tau index had median value
20.31. However, the TPM expression median of the 4046
genes found over-expressed also by RNentropy was 43.28,
remarkably dropping to TPM 1.62 for the 1581 genes found
significant only by the tau index. Also, the ratio between the
maximum expression value across the samples and the av-
erage was always higher than 5 for the tau index, and had
a median ∼7.5 either for genes found significant also by
RNentropy or those significant only for the tau index. But,
it dropped to 2.68 for those genes found to be significant
and over-expressed in at least one sample only by RNen-
tropy. With respect to these indices, thus, RNentropy cap-
tures less wide, but still significant, differences in expression.
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Figure 5. Expression values (as log(TPM+1), averaged over replicates of each sample) across the 18 human tissue samples of genes ABCC2 and AKAP5.

The complete distributions are available as Supplementary
Figure S8.

We think that this case study fully shows the capabilities
of our method, that provides a quick and comprehensive
overview of the variation of gene expression across the tis-
sues and individuals studied. The results are also consistent
if the normalization strategy and the measure employed for
the quantification of transcript levels are changed. Tools
based on pairwise comparisons seem instead to suffer from
the high variability of the data, that in turn impacts the es-
timate of the statistical parameters they are based on, and
eventually they yield very different, and somehow incon-
sistent, results. Tissue specificity indices, finally, are able to
capture only those genes with the widest relative variation
of expression.

Identification of marker genes in seven mouse brain cell types

A very thorough characterization of the transcriptome of
different brain cell types has been presented in (13). In
particular, neurons, glia (astrocytes, oligodendrocytes, and
microglia) and vascular cells (endothelial cells and peri-
cytes) from mouse brain were investigated by RNA-Seq,
and the results, summarizing expression at the gene and al-
ternative splicing level, collected in a user-friendly database.
Oligodendrocytes were split into three sub-types, that is,
precursor (OPC), newly formed (NFO) and myelinating
(MO) oligodendrocyte cells. Pericyte samples were consid-
ered by authors to suffer from contamination from other
cells: they were thus excluded from downstream analyses for
the identification of genes over-expressed in each cell type
and the corresponding expression values not included in the
database.

RNA-Seq was performed on poly-A RNAs pooled from
different individuals, and samples from each cell type se-
quenced in two replicates. Expression values were defined
as FPKMs, and replicates were employed to compute con-
fidence intervals for the resulting values and exclude from
downstream analyses genes with unreliable expression es-
timates. We remark that if replicates are kept separate this
step is automatically performed by RNentropy in the com-
putation of local p-values, as also shown in the human in-
dividual tissues analysis. Differential expression was cal-
culated as the FPKM of a gene in a given cell type di-
vided by the average FPKM of all other cell types, with
the exception of each of the oligodendrocyte sub-types, that

were compared only to the other non- oligodendrocyte cells.
Thus, expression values and differentially expressed genes
were available for seven cell types or sub-types. Differen-
tially expressed genes, potential markers of each cell type,
were further confirmed by performing the same analysis
with oligonucleotide microarrays. A distinct set of candi-
date marker genes for each cell was eventually validated by
qRT-PCR and in situ hybridization.

We applied RNentropy to the FPKM values of the seven
cell types retrieved from the database, with corrected global
and local P-value thresholds of 0.01. A sizable number of
6435 genes was reported to be over-expressed in at least one
cell type, split among the different samples as summarized
in Figure 6 and detailed in Supplementary Table S4. As a
reference, we interrogated the database for the top 100 genes
with FPKM > 20 specific for each cell type, ranking them by
fold enrichment, that is, using the same criteria employed in
the original work for the selection of marker genes (Figure
4 in (13)). The overlap between RNentropy over-expressed
genes and the marker genes of the database is very high,
equaling or close to the 100% of the top marker genes for
all cell types (Figure 6, Supplementary Table S4).

However, striking differences emerge if we consider genes
found over-expressed in only one cell type by RNentropy,
that is, what should be considered to be real marker genes.
In oligodendrocyte cell sub-types (OPC, MO, and NFO
cells), the overlap dropped to 50% of the top 100 genes for
OPC, 15% for MO, and just 7% for NFO. The reason lies
in the fact that for the three oligodendrocyte cell sub-types
the ratio was computed only with respect to non- oligoden-
drocyte cells. Thus, a gene over-expressed in both MO and
NFO cells according to this criterion could be reported to
be a marker for both (e.g. gene Olig1, Figure 4 from (13)).
The similarity between the transcriptome of these cell sub-
types is also clear from the PMI heatmap (Figure 6B), with a
very high correlation between MO and NFO cells, as well as
from the distribution of the expression values of genes over-
expressed in the two cell sub-types (Supplementary Figure
S9). Further post-processing and manual curation of the re-
sults can easily eliminate redundant markers: on the other
hand, RNentropy was able to report hundreds of genes ex-
clusively over-expressed in each cell type (minimum 190 for
MO cells), thus identifying true cell type specific markers in
a more robust and straightforward way, and less dependent
on subjective choices of expression thresholds and ratios.
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Figure 6. (A) Number of genes found to be over-expressed by RNentropy in each of the seven brain cell types, and number of the top 100 marker genes of
each cell type defined according to (13) found to be over-expressed by RNentropy. (B) Heatmap of PMI scores computed on over-expressed genes shared
by each pair of samples.

Human liver RNA samples from six individuals

It is very common to have experimental settings in which
several samples or conditions are studied together, with lit-
tle or no a priori knowledge on the degree of similarity
among the different expression profiles, nor a clear defini-
tion of which samples should be considered as ‘replicates’
and combined together in the comparisons. In this context,
where in principle an ‘all against all’ comparison should be
performed, it is common practice (and advised, see for ex-
ample the tutorial for DESeq2 at Bioconductor, ‘Analyzing
RNA-seq data with DESeq2’ at DESeq2 page at biocon-
ductor.org. Version May 2017. Section ‘Can I run DESeq2
to contrast the levels of many groups?’) to perform prelim-
inary explorative analyses using methods like clustering or
principal component analysis, and from the results define
‘replicates’ and design the most relevant comparisons, usu-
ally between conditions that differ most, for finding genes
best characterizing the transcriptomes and the respective
differences. We show here how RNentropy can encompass
both these aspects in a single analysis.

A simple but suitable example is the dataset composed
of liver samples from six Nigerian individuals, three males
and three females, introduced in (28), as part of a larger
study on sex-specific expression in human and its conser-
vation in two other primate species. The original work was
focused on finding sex-specific genes, comparing the three
male to the three female individual samples both in inter-
and intra-species fashion, thus considering as ‘replicates’
samples from the same sex. On the other hand, all the sam-
ples could be viewed as ‘biological replicates’ of the same
condition (human liver cells). We retrieved from Recount
(41) the corresponding read counts for human, and TMM-
normalized them edgeR. By performing a male vs female

comparison, however, edgeR did not report any gene dif-
ferentially expressed between males and females, at a FDR
threshold of 0.01, neither by employing the glmQLFTest or
the glmLRT test, with a few hundreds of genes with un-
corrected P-value <0.01.

We processed this dataset by considering each individ-
ual as a separate sample and applying RNentropy to the
counts per million values output by edgeR after normal-
ization. The results (see Figure 7) reported 2189 genes
with significant variation according to the global test and
over-expressed in at least one sample, detecting once again
relevant biological variation among different individuals.
Analysis through the DAVID enrichment tool reported
‘Metabolism’ as the functional annotation better charac-
terizing these genes (P-value < 10−10) that were found to
be enriched also in several KEGG pathways related to liver
function (metabolic pathways, fatty acid degradation, Bile
secretion, and so on). According to the local test, however,
RNentropy did find only one gene to be simultaneously
over-expressed in all three female samples (and not in any
male), and vice versa nine over-expressed in all three male
samples and not in females. By limiting sex-specific expres-
sion to genes over-expressed in two samples out of three in
either sex and none of the other, we detected 98 and 191
genes over-expressed in females and males samples only, re-
spectively. This latter set contained all the genes found to
be most variable by edgeR but not passing the FDR thresh-
old. However, samples sharing the larger number of over-
expressed genes are mixed, coming from both males and fe-
male individuals, with 552 genes found to be over-expressed
simultaneously in at least one female and one male sam-
ple. Finally, ∼50% of the significant genes showed over-
expression in a single individual. All in all, thus, individ-
ual variation, regardless of sex, seems to be a feature clearly
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Figure 7. (A) Number of genes over-expressed in each of the six male/female liver samples. ( B) Number of genes simultaneously expressed in x male
samples (rows) and y female samples (columns). (C) Heatmap of point-wise mutual information scores computed on over-expressed genes shared between
all pairs of samples.

dominating sex-specific expression. The results of point-
wise mutual information analysis are shown in Figure 7C,
where it can be clearly seen how one female sample (F3)
does not seem to correlate well with any other sample, and
how one male sample (M2) has a pattern of over-expressed
genes more similar to two females (F1 and F2) rather than
the two other males.

This example shows how RNentropy can combine in a
simple and intuitive way in a single run an explorative anal-
ysis giving an overview of the similarities among the tran-
scriptomes studied, and at the same time a statistical frame-
work for the identification of differentially expressed genes,
without the need to pre-define groups of samples to be con-
sidered to be replicates of conditions to be compared. For
example, if we wanted to perform an exhaustive analysis de-
tecting genes differentially expressed between any combina-
tion of samples, we would have to design 41 pairwise com-
parisons, a number rising to 162 in case of eight samples, to
637 for ten and so on.

DISCUSSION

We presented here a novel methodology that introduces
an entropy-based measure for the identification of biased
and/or specific expression across multiple RNA-Seq condi-
tions. The statistical tests based on this measure can provide
a quick and effective overview of the variation of the tran-
scriptional landscape in any number of samples from differ-
ent tissues, cell types, time points, physiological or patholog-
ical conditions.

To show the flexibility and the reliability of our method-
ology, we presented the results of the analysis of different
RNA samples. We employed 48 wild type and mutant yeast
strains to assess false positive rates; six different human tis-
sues from three individuals, identifying genes with tissue-
and/or individual-specific expression patterns; seven mouse
brain cell types, defining marker genes for each type; six hu-
man liver samples from three male and three female indi-
viduals, highlighting patterns of similarities in expression
across different individuals.

Several studies comparing the performance of different
RNA-Seq analysis tools over different benchmark datasets
have appeared in literature in the last few years. Perfor-

mances change according to the different case studies, and
the general consensus is to choose the most suitable tool(s)
according to the specific features of the datasets to be ana-
lyzed, and more importantly to use more than one tool in
order to obtain more consistent results. We think that our
method can be in turn very useful in cases like the multi-
sample comparisons we presented, providing a quick and
comprehensive overview of the transcriptional landscape of
the conditions considered, together with the genes charac-
terizing it by showing the most relevant variations of expres-
sion. Thus, it can be a very effective addition to the most
commonly used pipelines for the comparison of transcrip-
tome landscapes and the identification of differentially ex-
pressed genes. The examples we presented also point in a
straightforward way to the possibility of applying RNen-
tropy to single cell RNA-Seq experiments, which is indeed
the focus of our current research.

DATA AVAILABILITY

RNentropy is available at www.beaconlab.it/RNentropy as
a standalone software package (executable files for any
LINUX 64 bit platform). C++ source code, and the im-
plementation in the R language are also freely available for
download.

All sequencing data produced in the present work are part
of a series of sequencing DNA and RNA samples char-
acterizing genomic variability at the individual level, and
are available at the dbGaP database (https://www.ncbi.nlm.
nih.gov/gap (42)) under accession number phs000870. All
normalized read counts used in subsequent analyses are in-
cluded in the RNentropy software package.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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27. Gierliński,M., Cole,C., Schofield,P., Schurch,N.J., Sherstnev,A.,
Singh,V., Wrobel,N., Gharbi,K., Simpson,G., Owen-Hughes,T. et al.
(2015) Statistical models for RNA-seq data derived from a
two-condition 48-replicate experiment. Bioinformatics, 31, 3625–3630.

28. Blekhman,R., Marioni,J.C., Zumbo,P., Stephens,M. and Gilad,Y.
(2010) Sex-specific and lineage-specific alternative splicing in
primates. Genome Res., 20, 180–189.

29. Guo,Y., Li,C.-I., Ye,F. and Shyr,Y. (2013) Evaluation of read count
based RNAseq analysis methods. BMC Genomics, 14(Suppl. 8), S2.

30. Seyednasrollah,F., Laiho,A. and Elo,L.L. (2015) Comparison of
software packages for detecting differential expression in RNA-seq
studies. Brief. Bioinform., 16, 59–70.

31. Engel,S.R., Dietrich,F.S., Fisk,D.G., Binkley,G., Balakrishnan,R.,
Costanzo,M.C., Dwight,S.S., Hitz,B.C., Karra,K., Nash,R.S. et al.
(2014) The reference genome sequence of Saccharomyces cerevisiae:
then and now. G3 (Bethesda), 4, 389–398.

32. Dennis,G. Jr, Sherman,B.T., Hosack,D.A., Yang,J., Gao,W.,
Lane,H.C. and Lempicki,R.A. (2003) DAVID: Database for
Annotation, Visualization, and Integrated Discovery. Genome Biol.,
4, P3.

33. Uhlen,M., Fagerberg,L., Hallstrom,B.M., Lindskog,C., Oksvold,P.,
Mardinoglu,A., Sivertsson,A., Kampf,C., Sjostedt,E., Asplund,A.
et al. (2015) Tissue-based map of the human proteome. Science, 347,
1260419.

34. Subramanian,A., Tamayo,P., Mootha,V.K., Mukherjee,S.,
Ebert,B.L., Gillette,M.A., Paulovich,A., Pomeroy,S.L., Golub,T.R.,
Lander,E.S. et al. (2005) Gene set enrichment analysis: a
knowledge-based approach for interpreting genome-wide expression
profiles. Proc. Natl. Acad. Sci. U.S.A., 102, 15545–15550.

35. Buja,L.M. (2013) The pathobiology of acute coronary syndromes:
clinical implications and central role of the mitochondria. Tex Hear.
Inst J, 40, 221–228.

36. Machado,N.G., Alves,M.G., Carvalho,R.A. and Oliveira,P.J. (2009)
Mitochondrial involvement in cardiac apoptosis during ischemia and
reperfusion: can we close the box? Cardiovasc. Toxicol., 9, 211–227.

37. Kanehisa,M., Sato,Y., Kawashima,M., Furumichi,M. and Tanabe,M.
(2016) KEGG as a reference resource for gene and protein
annotation. Nucleic Acids Res., 44, D457–D462.

38. Loyer,P., Corlu,A. and Desdouets,C. (2012) Regulation of the
hepatocyte cell cycle: signaling pathways and protein kinases. Int. J.
Hepatol., 2012, 592354.

39. Julien,P., Brawand,D., Soumillon,M., Necsulea,A., Liechti,A.,
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